

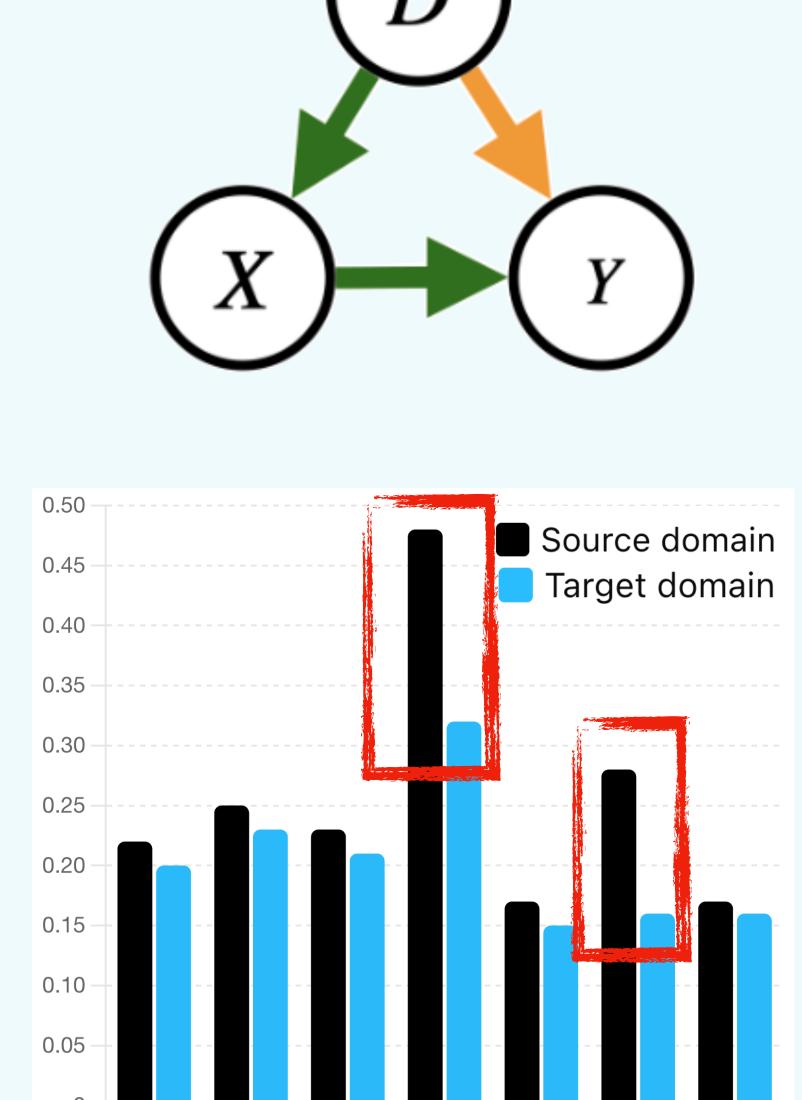
Motivation

 To understand differences in performance between a source domain (D = 0) and target domain (D = 1), existing methods decompose the average performance difference into contributions from covariate vs outcome shifts:

 $\mathbb{E}_1[\ell(Y,f(X))] - \mathbb{E}_0[\ell(Y,f(X))]$ $= \mathbb{E}_1[Z_0(X)] - \mathbb{E}_0[Z_0(X)]$

+ $\mathbb{E}_1[Z_1(X)] - \mathbb{E}_1[Z_0(X)]$

where $Z_D(X) = \mathbb{E}_D[\ell(Y, f(X)) | X].$



• However, *performance differences can vary significantly* across subgroups.

Key contributions

- To help model developers better diagnose and mitigate large performance gaps, this work develops SHIFT, a hierarchical hypothesis testing framework that answers:
 - **1.** (Who) Have covariate or outcome shifts led to unacceptably worse performance in any meaningfully large subgroup?
- 2. (Why) If so, can these performance drops be explained by a sparse subset of variables in X?
- Unlike existing methods, SHIFT
- Is nonparametric
- Provides valid uncertainty quantification, even in settings with potentially limited data
- Does not require detailed causal knowledge

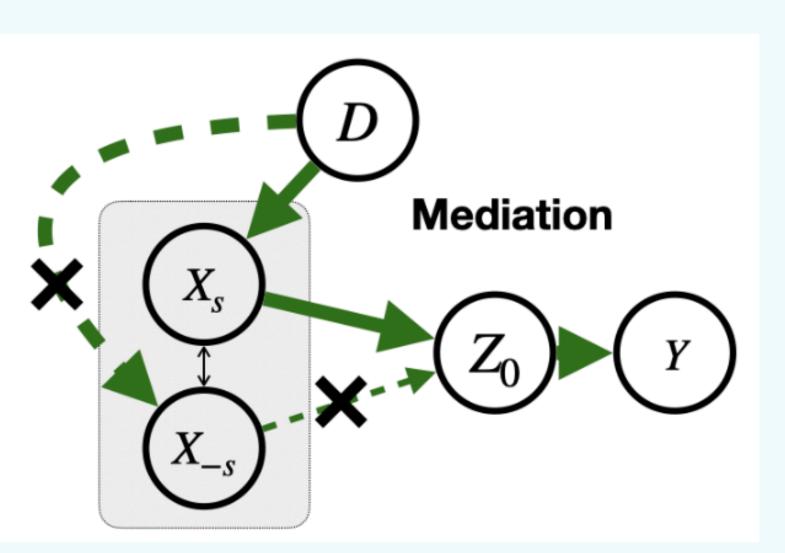
"Who[®] experiences large model decay and why[®]?" A Hierarchical Framework for Diagnosing Heterogeneous Performance Drift

Harvineet Singh¹, Fan Xia¹, Alexej Gossmann², Andrew Chuang¹, Julian Hong¹, Jean Feng¹ ¹ University of California, San Francisco, ² Independent

Aggregate Covariate Shift Hypothesis H_0 : For all subgroups A with size $\geq \epsilon$, the performance drift in A due to the aggregate covariate shift is no larger than pre-specified tolerance $\tau \ge 0$, i.e. $\mathbb{E}_1[Z_0(X) \mid X \in A] - \mathbb{E}_0[Z_0(X) \mid X \in A] \le \tau.$

 X_{s} -specific Covariate Shift Hypothesis H_0 : For all subgroups A with size $\geq \epsilon$, the candidate covariate shift solely with respect to variable subset X_s explains the performance change in A, i.e.

 $\mathbb{E}_1[Z_0(X) \mid X \in A] - \mathbb{E}_s[Z_0(X) \mid X \in A] \le \tau.$



SHIFT step-by-step

Step 1. Split data into train vs test:

Train

Step 2a. Estimate nuisance parameters, i.e. outcome models \hat{Z}_D, \hat{Z}_s and density ratio models $\hat{\pi}, \hat{\pi}_{s}$, using ML.

Step 2b. Estimate candidate subgroups (i.e. A_{agg}, A_{s}), defined as binary functions of X, using ML.

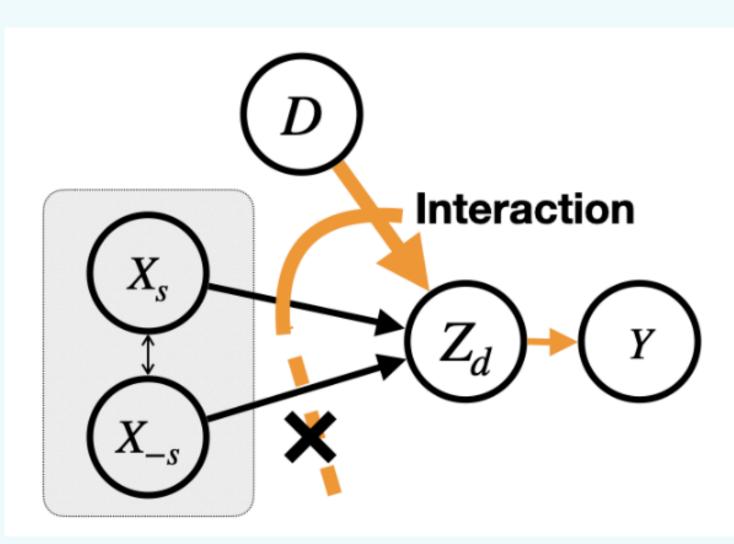
SHIFT: <u>Subgroup-scanning</u> <u>Hierarchical</u> Inference **F**ramework for performance drif**T**

Aggregate (

 H_0 : For all subgroups A with size $\geq \epsilon$, the performance drift in A due to the aggregate is no larger than pre-specified tolerance $\tau \ge 0$, i.e. $\mathbb{E}_1[Z_1(X) \mid X \in A] - \mathbb{E}_1[Z_0(X) \mid X \in A] \le \tau.$

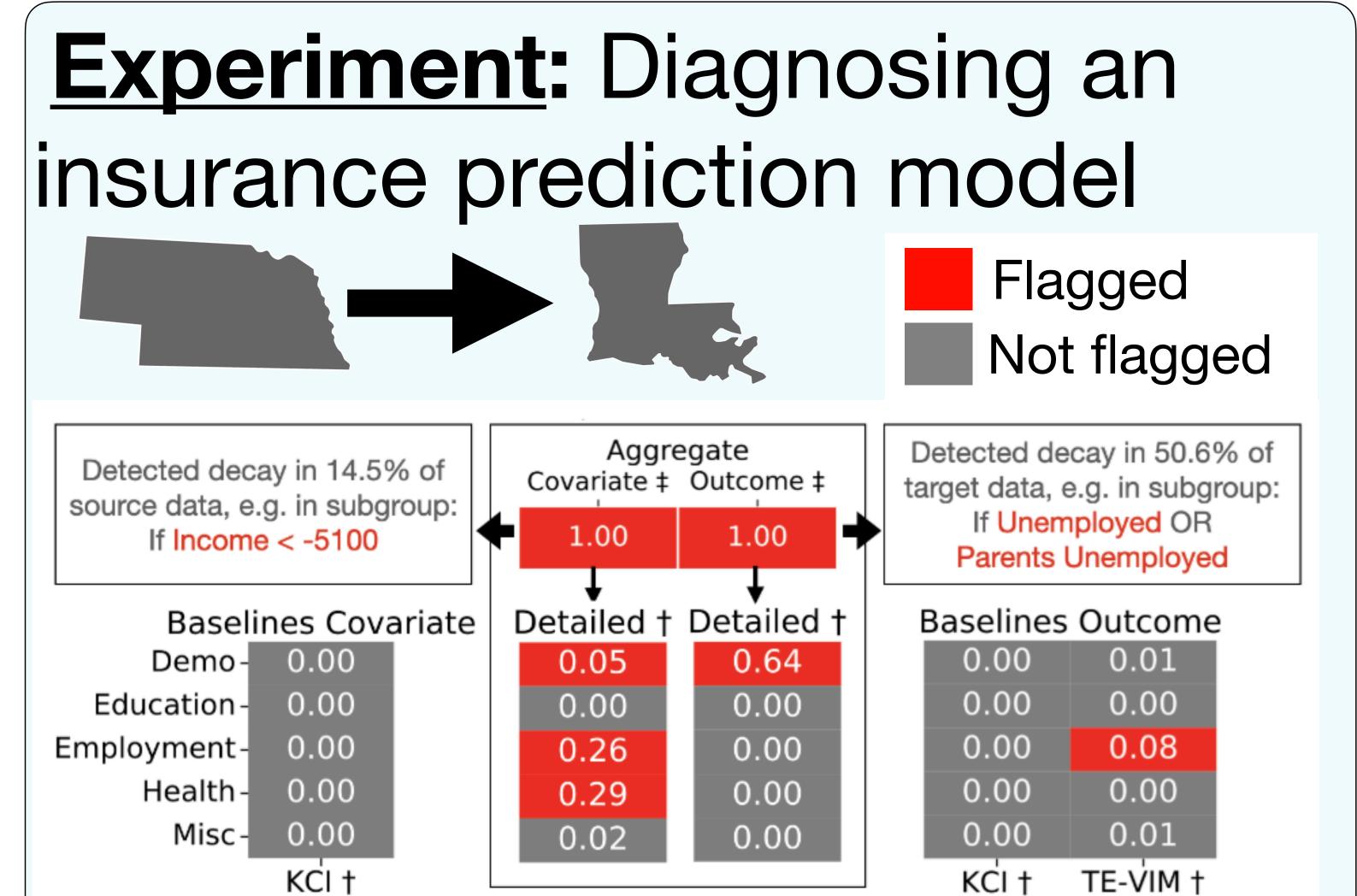
Shift Hypothesis

 X_{c} -specific (Shift Hypothesis H_0 : For all subgroups A with size $\geq \epsilon$, the candidate o me shift solely with respect to explains the performance variable subset change in A, i.e. $\mathbb{E}_1[Z_1(X) | X \in A] - \mathbb{E}_1[Z_s(X) | X \in A] \le \tau.$

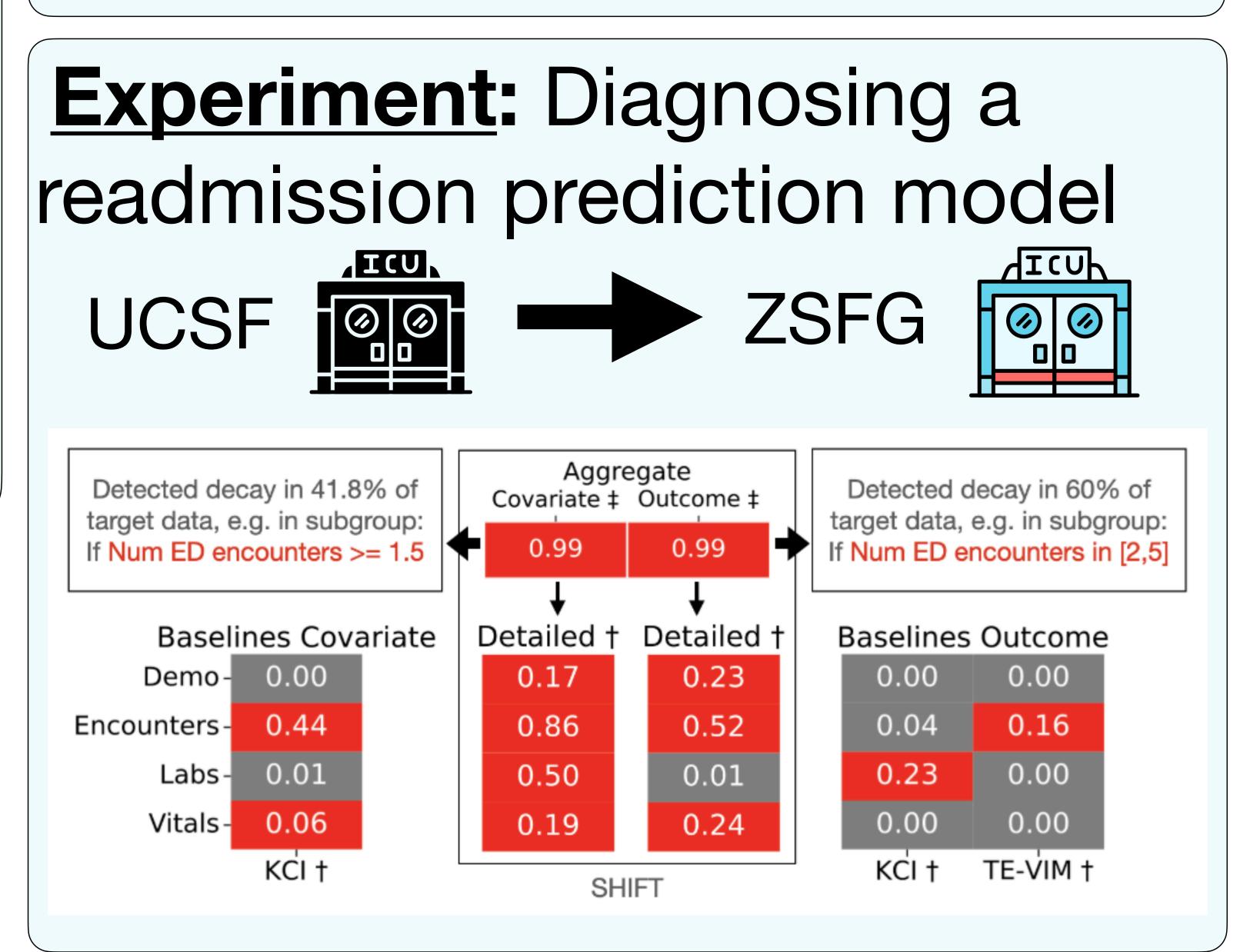


Step 3. Construct test statistics $|(e.g. \mathbb{E}[(\ell - Z_0(X) - \tau)1\{X \in A\}])|$ using double-debiased ML. Obtain p-values using multiplier bootstrap.

Test



SHIFT flags aggregate tests that are rejected to indicate a subgroup has been detected and flags X_{c} -specific tests that are not rejected as potential explanations.



Paper here This work was funded through a Patient Centered Outcomes Research Institute® (PCORI®) Award (ME-2022C125619).

The views presented in this work are solely the responsibility of the author(s) and do not necessarily represent the views of the PCORI®, its Board of Governors, or Methodology Committee.