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Machine learning in healthcare
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Online machine learning in healthcare
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Online learning: Benefits

Improve performance on
average and/or within
subpopulations

| ocalize a model to a new
medical site

Adapt to distribution shifts
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Online learning: Risks

e Algorithmic modifications are not guaranteed to improve
performance due to:

 Qver-updating

e (Catastrophic forgetting

* Feedback cycles

e Multiple hypothesis testing O Q
 (Qbservational data and confounding .

* Machine-human interaction

e Data quality



Proposed Reqgulatory Framework for Modifications
to Artificial Intelligence/Machine Learning (Al/ML]-

Based Software as a Medical Device (SaMD]

Discussion Paper and Request for Feedback
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Algorithm change protocols with statistical guarantees

1. Online hypothesis testing

- Feng, Jean, Scott Emerson, and Noah Simon. 2021.
“Approval Policies for Modifications to Machine Learning-
Based Software as a Medical Device: A Study of Bio-
Creep.” Biometrics.

2. Game-theoretic online learning

* Feng, Jean. 2021. “Learning to Safely Approve Updates to
Machine Learning Algorithms.” Proceedings of the
Conference on Health, Inference, and Learning.

3. Bayesian inference

- Feng, Jean, Berkman Sahiner, Alexej Gossmann, and
Romain Pirracchio. 2021. Bayesian logistic regression for
online recalibration and revision of clinical prediction
models with guarantees. Journal of the American Medical
Informatics Association.



Problem statement

Design a performance evaluation component of the Algorithm

Change Protocol (pACP) that approves good modifications
quickly and controls the rate at which bad modifications are

approved.

1) Define what an acceptable modification is.

Steps:

2) Define a statistical framework for evaluating pACPs.

3) Design pACPs.
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Problem Setup

o |et’s start simple with IID data.

e Attime pointst=1,2,... -
MONITORING DATA

e Collect new batch of
monitoring data
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Performance evaluation

In practice, a model is evaluated using multiple
performance metrics.
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What is an acceptable modification?
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What is an acceptable modification?
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Acceptable modifications

Definition: A modification from algorithm fto " is
acceptable for non-inferiority margin €, f —_ f, ifitis:

* Non-inferior with respect to all metrics
m(f)—e <m(f) Vk=1,..,K

® Superior in at least one metric

m(f) < m(f) ke {l,..K)
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Online error for a pACP

* Definition: The expected bad approval count at time T

T
BAC(T) = [E 2 1 {Approved unacceptable modification at time ¢}
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Online error for a pACP

 Definition: The expected bad approval count at time T

T
BAC(T) =E | Y1 { 3 = 1,0t — 1 st f5 . fAt}
=1

"FWER"

* Definition: The expected bad approval and benchmark ratio at

time T

T
2
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1 { 3 = 1,0t — 1 st fi ., fAt}

1+ 1 { +B,_ }
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A zo0 of pACPs

e pACP-BIlind: Approve everything

e pACP-Reset: Compare to the latest approval with fixed p-value threshold

e pACP-Locked: Do not approve anything

o : Controls expected Bad Approval Count using alpha-
spending, group-sequential, and gate-keeping methods

o : Controls expected Bad Approval and Benchmark Ratios
using alpha-investing, group-sequential, and gate-keeping methods
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A simple protocol with no error control




Controlling BAC




A zo0 of pACPs

e pACP-BIlind: Approve everything

e pACP-Reset: Compare to the latest approval with fixed p-value threshold

e pACP-Locked: Do not approve anything

o : Controls expected Bad Approval Count using alpha-
spending, group-sequential, and gate-keeping methods

o : Controls expected Bad Approval and Benchmark Ratios
using alpha-investing, group-sequential, and gate-keeping methods
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Simulation studies

 Desired properties
1. Low rate of bad approvals
2. High rate of good approvals
e Setup

 Monitoring data is |ID at each time point and across
time points

e Binary prediction problem
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Simulation: mostly deleterious modifications

Proposed modifications deteriorate over time
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Simulation: mostly beneficial modifications

Train new models using the accumulating monitoring data
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Summary

* Bio-creep is a concern, even in this idealized scenario
with |[ID data. Designing a pACP cannot be taken lightly!

e |f we carefully design pACPs, we can approve good
modifications quickly while protecting against bad
modifications.
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Algorithm change protocols with statistical guarantees

1. Online hypothesis testing
* Black-box modifications

- Feng, Jean, Scott Emerson, and Noah Simon. 2021. “Approval . :
Policies for Modifications to Machine Learning-Based Software as Stationary data

a Medical Device: A Study of Bio-Creep.” Biometrics.

2. Game-theoretic online learning
* Black-box modifications

- Feng, Jean. 2021. “Learning to Safely Approve Updates to * Nonstationary data
Machine Learning Algorithms.” Proceedings of the Conference on * Faster approval
Health, Inference, and Learning.

3. Bayesian inference

- Feng, Jean, Berkman Sahiner, Alexej Gossmann, and Romain
Pirracchio. 2021. Bayesian logistic regression for online
recalibration and revision of clinical prediction models with
guarantees. Journal of the American Medical Informatics

Association.
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Approach 2: Game-theoretic online learning

e Game-theoretic online learning procedures provide performance
guarantees under arbitrary distribution shifts in terms of regret bounds.

* These guarantees are weak

when sample sizes are small, i

Monitoring data

which iIs common in medical
settings.

up to time t Approval weights
e We developed a new algorithm {v"‘/t o W, t}
called “Learning to approve” Pool of ’ ’
(L2A), which dynamically modifications | =W

weights black-box s ces r
modifications based on their WATRENIY:
past performance.

-=» Faster approval
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Algorithm change protocols with statistical guarantees

1. Online hypothesis testing
* Black-box modifications

* Feng, Jean, Scott Emerson, and Noah Simon. 2021. “Approval . :
Policies for Modifications to Machine Learning-Based Software as Stationary data

a Medical Device: A Study of Bio-Creep.” Biometrics.

2. Game-theoretic online learning
* Black-box modifications

- Feng, Jean. 2021. “Learning to Safely Approve Updates to * Nonstationary data
Machine Learning Algorithms.” Proceedings of the Conference on * Faster approval
Health, Inference, and Learning.

3. Bayesian inference

- Feng, Jean, Berkman Sahiner, Alexej Gossmann, and Romain * Parametric modifications

Pirracchio. 2021. Bayesian logistic regression for online * Nonstationary data
recalibration and revision of clinical prediction models with * Fastest approval rates
guarantees. Journal of the American Medical Informatics

Association.
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Approach 3: Bayesian inference

e |n practice, the most common modification applied to ML algorithms is
logistic recalibration or revision.

 \We can continually update the

oM Original
parameters of a logistic model
recalibration/revision model ~ Logistic
using Bayesian inference. fl (.X) recalibration/
=» Even faster approval revision
e \We derive regret bounds for Evolving 9 /
Bayesian logistic recalibration/ model

revision that hold under r
arbitrary distribution shifts. f t(x)
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Algorithm change protocols with statistical guarantees

1. Online hypothesis testing
* Black-box modifications

* Feng, Jean, Scott Emerson, and Noah Simon. 2021. “Approval . :
Policies for Modifications to Machine Learning-Based Software as Stationary data

a Medical Device: A Study of Bio-Creep.” Biometrics.

2. Game-theoretic online learning
* Black-box modifications

- Feng, Jean. 2021. “Learning to Safely Approve Updates to * Nonstationary data
Machine Learning Algorithms.” Proceedings of the Conference on * Faster approval
Health, Inference, and Learning.

3. Bayesian inference

- Feng, Jean, Berkman Sahiner, Alexej Gossmann, and Romain * Parametric modifications

Pirracchio. 2021. Bayesian logistic regression for online * Nonstationary data
recalibration and revision of clinical prediction models with * Fastest approval rates
guarantees. Journal of the American Medical Informatics

Association.

4. Others?
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