Variable selection and architecture search for deep learning

Jean Feng University of California, San Francisco

> ASA SLDS Webinar August 24th, 2021

Today's talk

- 1. Review of neural networks
- 2. Neural networks with variable selection
- 3. Neural networks with variable *and* architecture selection

What is deep learning?

Deep learning (DL) is a non-parametric machine learning method that builds large computational graphs called neural networks to model complex nonlinearities, interactions, and hierarchies in the data.

A statistical perspective of DL

Strengths of deep learning

- Universal Approximation Theorem: We can create a sufficiently large neural network to approximate any function.
- Memory efficient: Neural networks can express complex function using a small number of parameters.
- **Representational learning:** Neural networks iteratively apply non-linear transformations to create increasingly abstract representations.
- **Highly modular:** It is easy to add nodes, layers, modules!

Neural networks

• Neural networks span a wide range of models:

Linear regression as a neural network

Input Layer $\in \mathbb{R}^4$

Output Layer $\in \mathbb{R}^1$

Logistic regression as a neural network

Input Layer $\in \mathbb{R}^4$

Output Layer $\in \mathbb{R}^1$

A linear neural network

Input

Hidden layer

Output

A dense neural network

Deep neural networks

Full procedure for training a neural network

"Outer" optimization procedure: Hyperparameter optimization

Hyperparameters to tune:

- Number of layers
- Number of hidden nodes per layer
- Which variables to include
- Penalty parameters
- •

"Inner" optimization procedure: Neural network training

Minimize objective function, e.g. $\min_{W,b} \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{W,b}(x_i))^2 + \lambda ||W||^2$

Hyperparameter optimization

- Grid search
- Random search
- Gradient-free optimization
- Gradient-based optimization

All of these methods are computationally expensive.

Is the added computation time worth it, relative to the performance gain?

Will a neural network really help?

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?

Manuel Fernández-Delgado Eva Cernadas Senén Barro	MANUEL.FERNANDEZ.DELGADO@USC.ES EVA.CERNADAS@USC.ES SENEN.BARRO@USC.ES
CITIUS: Centro de Investigación en Tecnoloxías da Infor University of Santiago de Compostela Campus Vida, 15872, Santiago de Compostela, Spain	mación da USC
Dinani Amorim Departamento de Tecnologia e Ciências Sociais- DTCS Universidade do Estado da Bahia	DINANIAMORIM@GMAIL.COM

Av. Edgard Chastinet S/N - São Geraldo - Juazeiro-BA, CEP: 48.305-680, Brasil

Data set	#pat.	#inp.	#cl.	%Maj.
abalone	4177	8	3	34.6
ac-inflam	120	6	2	50.8
acute-nephritis	120	6	2	58.3
adult	48842	14	2	75.9
annealing	798	38	6	76.2
$\operatorname{arrhythmia}$	452	262	13	54.2

Rank	Acc.	κ	Classifier
32.9	82.0	63.5	$parRF_t (RF)$
33.1	82.3	63.6	$rf_{-}t$ (RF)
36.8	81.8	62.2	svm_C (SVM)
38.0	81.2	60.1	svmPoly_t (SVM)
39.4	81.9	62.5	$rforest_R (RF)$
39.6	82.0	62.0	elm_kernel_m (NNET)
40.3	81.4	61.1	$svmRadialCost_t$ (SVM)
42.5	81.0	60.0	$svmRadial_t$ (SVM)
42.9	80.6	61.0	$C5.0_{t}$ (BST)
44.1	79.4	60.5	$avNNet_t$ (NNET)

- Neural networks don't often outperform other off-the-shelf ML methods on tabular datasets.
- Neural networks often overfit on high-dimensional datasets.

Is there really no **simple** procedure for fitting a neural network that works well for **tabular** and/or **high-dimensional** data?

Today's talk

- 1. Review of neural networks
- 2. Neural networks with variable selection
- 3. Neural networks with variable *and* architecture selection

Nonparametric learning in high dimensions

Predicting *Y* given *X* when:

- The number of variables p is large compared to the number of observations *n* (high-dimensional)
- The conditional relationship is unknown and we'd like to place minimal assumptions on its structure (nonparametric)
- Our prior knowledge tells us that only a subset of variables are important (sparsity)

Patients

Recall: sparse linear models

- Ordinary least squares is likely to overfit in highdimensional settings.
- Sparsity-inducing penalties like the lasso and the group lasso are commonly used in such settings to regularize the model:

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \theta^{\mathsf{T}} x_i \right)^2 + \lambda \|\theta\|_1 \qquad \qquad \text{Lasso}$$
(Tibshirani 1996)

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \theta^{\mathsf{T}} x_i \right)^2 + \lambda_1 \|\theta\|_1 + \lambda_2 \sum_{j=1}^{m} \|\theta_{(j)}\|_2 \text{ Sparse Group Lasso (Simon 2013)}$$

Recall: sparse additive models

Relaxing the assumption of linearity, we can also fit additive models of the form:

$$f(x) = \sum_{j=1}^{p} f_j(x_j)$$

 To reduce overfitting, we can fit sparse additive models (SpAM) by penalizing the L2 norm of the univariate functions (Ravikumar 2009)

$$\min_{f_j: j=1,..,p} \frac{1}{n} \sum_{i=1}^n \left(y_i - f(x_i) \right)^2 + \lambda \sum_{j=1}^p \left\| f_j \right\|_2$$

Sparsity + Neural networks?

- We can take a similar approach for neural networks.
- Example 1: If $W_{1,1}^{(1)} = W_{1,2}^{(1)} = W_{1,3}^{(1)} = 0$, then the neural network will not depend on x_1 .

Sparsity + Neural networks?

- We can take a similar approach for neural networks.
- Example 2: If $W_{1,1}^{(1)} = W_{1,2}^{(1)} = 0$, then only one of the hidden nodes will depend on x_1 .

Sparse-Input Neural Networks (SPINN)

• We can use a sparse group lasso penalty to train a neural network that depends on a small number of variables:

Encourages sparsity of edge weights in the first layer

$$\min_{W,b} \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{W,b}(x_i))^2 + \lambda_1 ||W^{(1)}||_1 + \lambda_2 \sum_{j=1}^{p} ||W^{(1)}_{j,\cdot}||_2 + \lambda_3 \sum_{l=2}^{L} ||W^{(l)}||_2^2$$
Encourages removal of all
edges connected to the
same input variable
Encourages
weight matrices
of later layers
to be small

Jean Feng and Noah Simon. "Sparse-Input Neural Networks
for High-Dimensional Nonparametric Regression." *ICML*
2017 Workshop on Principled Approaches to Deep Learning.
http://arxiv.org/abs/1711.07592.

Training sparse-input neural networks

• We minimize the penalized empirical loss via *generalized* gradient descent:

At each iteration, we:	
 Take a gradient step with respect to the smooth terms (empirical risk + ridge penalty) 	
 Shrink and threshold the parameters in the sparse group lasso 	- New step

- To test different values of the penalty parameter, you can consider **warm-starts** to accelerate training.
 - Recent works have explored analogs of the Lasso paths for neural networks (Lemhadri 2021).

Simulation study

Additive multivariate model, p = 1000

 $E[Y|X] = (x_1 \wedge x_2) \cos(1.5x_3 + 2x_4) + e^{x_5 + \sin(x_4)} x_2 + \sin(x_6 \vee x_3)(x_5 - x_1)$

Methods

- Sparse input NN
- Ridge-penalized NN
- Sparse Additive Model (SpAM)
- Oracle NN using only relevant covariates
- Oracle additive model using univariate smoothing splines
- Oracle 6-variate smoothing spline

Simulation study

Models

- Sparse-input NN
- Ridge-penalized NN
- Oracle NN
- Multivariate Oracle
- Univariate Oracle
- 🔶 SpAM

Weights

- Irrelevant
- Relevant

Application: Predicting riboflavin production from gene expression data

- High-throughput genomic data set for the production of riboflavin in Bacillus subtilis⁴
 - n = 71 experimental settings with gene expression profiles of p = 4088 genes
- Randomly split the data with 4/5 training data and 1/5 test data. Results for 30 random splits. Standard errors in parentheses.

Method	MSE on test set	Num. of nonzero features
Sparse-input NN	0.124 (0.010)	52.7 (6.1)
Ridge-penalized NN	0.237 (0.018)	4088 (0)
SpAM	0.145 (0.014)	34.5 (1.3)
Linear model with Lasso	0.145 (0.017)	39.1 (3.3)

Summary

- We can use the lasso and the group lasso to train neural networks that depend on a small number of variables.
- SPINN performs well in high-dimensional settings and significantly better than ridge-penalized NNs.
- However, the performance of SPINN depends on performing architecture search, which is computationally expensive.

Today's talk

- 1. Review of neural networks
- 2. Neural networks with variable selection
- 3. Neural networks with variable *and* architecture selection

We have shifted the burden of variable selection to the "inner" optimization procedure, but the problem of architecture selection remains...

Can we also shift the burden of architecture search?

Sparse-Input hiERarchical networks (SIER-net)

Jean Feng and Noah Simon. "Ensembled Sparse-Input Hierarchical Networks for High-Dimensional Datasets." *Under review*. http://arxiv.org/abs/2005.04834.

$$\min_{\beta,W,\alpha} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - f_{\beta,W,\alpha}(x_i) \right)^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|W\|_1$$

$$f_{\beta,W,\alpha}(x) = \psi \left(\sum_{l=1}^{L-1} \frac{|\alpha_l|}{\sum_{l'=1}^{L} |\alpha_{l'}|} \xi_l \right) \text{ where } \xi_l \text{ are the values of the additional hidden nodes at layer } l$$

$$\xi_1 \quad \xi_2 \quad \xi_3 \quad \text{Skip-connections} \\ \{\alpha_l\}_{l=1}^{L-1}$$

$$\min_{\beta,W,\alpha} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - f_{\beta,W,\alpha}(x_i) \right)^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|W\|_1$$
Linear model where all coefficients are nonzero
Sparse linear model
$$\lambda_2$$
Network
compactness
$$\sum_{i=1}^{n} \left(y_i - f_{\beta,W,\alpha}(x_i) \right)^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|W\|_1$$

 Λ_1

5-layer sparse-input

neural network

Input sparsity

Variable selection

- Establishing variable selection guarantees is generally a difficult endeavor that requires strong assumptions, even for linear models.
- Variable selection for neural networks is even harder because the objective is non-convex with respect to the model parameters.
 - Under certain conditions, the total weight assigned to irrelevant input variables by SPINN with a single hidden layer scales at a rate of $O(\sqrt{\log p})$ (Feng and Simon 2017).
- Rather than focusing on variable selection, can we say something about *variable screening* under less stringent conditions?

Can SIER-net be used for support screening?

- For true model f^* , suppose s^* is its true support, e.g. $E[Y|X = x] = f^*(x_1, \dots, x_{|s^*|}).$
- Let \hat{s} be the estimated support by SIER-net.

Predictive value of the true support

Support screening: Results

- Upper bound: For sparse-input hierarchical networks, q_m is small if *n* is at least $n \gtrsim 1/\gamma^2(m)$.
- Lower bound: Any estimation procedure requires at least $n \gtrsim 1/\gamma(2m)$ for q_m to be small.
- Sparse-input hierarchical networks can perform support screening effectively if the covariates are independent.
- However, accurate support screening is unrealistic if the covariates are highly correlated.

Recall the power of ensembling...

- Ensembling tends to improve performance for high-variance, lowbias methods, e.g. decision trees and neural networks (Lakshminarayanan 2017).
- Ensembling can be viewed as an approximation of Bayesian model averaging (BMA) (Wilson 2020, Pearce 2020).

Ensemble by Averaging Sparse-Input hiERarchical networks (EASIER-net)

- By viewing ensembling as an approximation of Bayesian model averaging, ensembling SIER-net gives us two major benefits with respect to variable selection:
 - The ensemble quantifies the uncertainty of the true support: the probability that a member in EASIER-net selects support \tilde{s} is approximately equal to the posterior probability that the true support is \tilde{s}
 - Ensembling induces a "grouping effect," where strongly correlated variables are selected at similar rates.

Simulation study: Variable screening

$$Y = X_1 * X_2 + \sin(X_3 + X_4) + \epsilon$$

$$X_i = \tilde{X}_i \text{ and } \quad X_{i+4} = \rho \tilde{X}_i + (1-\rho) \tilde{X}_{i+4} \text{ for } i = 1, ..., 4$$

	Covariate index							
ho	1	2	3	4	5	6	7	8
0.00	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000
0.50	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000
0.80	0.980	1.000	1.000	1.000	0.020	0.000	0.000	0.000
0.90	0.860	0.890	0.870	0.990	0.160	0.120	0.280	0.010
0.95	0.630	0.730	0.540	0.940	0.380	0.300	0.570	0.270
1.00	0.550	0.480	0.470	0.570	0.460	0.540	0.600	0.640

Application: Gene expression data analysis

- We study the performance of SIER-net and EASIER-net on 46 gene expression datasets from the Curated Microarray Database (CuMiDa)
 - Number of categories: two to seven
 - Number of measured genes: ten to fifty thousand
 - Number of observations: ten to three hundred
- Initialize SIER-net and EASIER-net with five hidden layers and 100 hidden nodes per layer

Application: Gene expression data analysis

Method	Mean accuracy (SE)	# of times achieved top	Negative log likelihood
		accuracy	
Logistic Regression	0.888 (0.022)	26	0.340 (0.040)
Random Forest	0.883 (0.022)	22	0.370 (0.037)
Gradient Boosted Trees	0.886 (0.021)	24	_
SIER-net	0.898 (0.020)	32	0.278 (0.048)
EASIER-net	0.904 (0.019)	36	0.257 (0.043)

Application: Gene expression data analysis

• How deep were the neural networks?

 How many variables were selected?

Conclusion

- Neural network can be useful for tabular, highdimensional datasets... But to make them worth the computation time, you'll need some extra tricks!
- EASIER-nets rely on *two* carefully-designed lasso penalties.
- The ensembling step in EASIER-net helps quantify the uncertainty of the variable selection procedure.

References

- Jean Feng and Noah Simon. "Ensembled Sparse-Input Hierarchical Networks for High-Dimensional Datasets." *Under review*. http:// arxiv.org/abs/2005.04834.
 - Python code: https://github.com/jjfeng/easier_net
 - R package: https://github.com/jjfeng/easier_net_R
- Jean Feng and Noah Simon. "Sparse-Input Neural Networks for High-Dimensional Nonparametric Regression." *ICML 2017 Workshop on Principled Approaches to Deep Learning.* http://arxiv.org/abs/ 1711.07592.

Thank you!

• Joint with work Noah Simon

• ASA SLDS and Jaime Speiser