
Variable selection and
architecture search for

deep learning
Jean Feng

University of California, San Francisco

ASA SLDS Webinar

August 24th, 2021

�1

Today’s talk
1. Review of neural networks

2. Neural networks with variable selection

3. Neural networks with variable and architecture
selection

!2

Deep learning (DL) is a non-parametric machine learning
method that builds large computational graphs called neural
networks to model complex nonlinearities, interactions, and
hierarchies in the data.

 — A statistical perspective of DL

What is deep learning?

Problem Child

Input Output

!3

Simple Complex

Olah 2017

• Universal Approximation Theorem:
We can create a sufficiently large
neural network to approximate any
function.

• Memory efficient: Neural networks
can express complex function using a
small number of parameters.

• Representational learning: Neural
networks iteratively apply non-linear
transformations to create increasingly
abstract representations.

• Highly modular: It is easy to add
nodes, layers, modules!

Strengths of deep learning

!4

Neural networks

Linear model Nonlinear model with
complex interactions

• Neural networks span a wide range of models:

!5

Linear regression as a neural network

x1

x2

x3

x4

w1

w2

w3
w4 fW,b(x) = Wx + b

“Weights” “Bias”

!6

Logistic regression as a neural network

x1

x2

x3

x4

w1

w2

w3
w4 fW,b(x) = σ(Wx + b)

σ(z) =
exp(z)

1 + exp(z)

Sigmoid function

“Activation function”

!7

A linear neural network

z1 = W(1)x + b(1)

fW,b(x) = W(2)z1 + b(2)

Hidden layerInput Output
!8

x1

x2

x3

x4

A dense neural network

z1 = σ1(W(1)x + b(1))

fW,b(x) = σ2(W(2)z1 + b(2))

Nonlinear activation function

Hidden layerInput Output
!9

x1

x2

x3

x4

Deep neural networks
Width

Depth
!10

Full procedure for training a neural network
“Inner” optimization procedure:

Neural network training

min
W,b

1
n

n

∑
i=1

(yi − fW,b(xi))2 + λ∥W∥2

Minimize objective function, e.g.

“Outer” optimization procedure:

Hyperparameter optimization

Hyperparameters to tune:

• Number of layers

• Number of hidden nodes per layer

• Which variables to include

• Penalty parameters

• …

Hyperparameter 1

Hyperparameter 2

Hyper-
parameter

3

!11

• Grid search

• Random search

• Gradient-free optimization

• Gradient-based optimization

Hyperparameter
optimization

All of these methods are computationally expensive.

Is the added computation time worth it, relative to the
performance gain?

!12

• Neural networks don’t often
outperform other off-the-shelf ML
methods on tabular datasets.

• Neural networks often overfit on
high-dimensional datasets.

Will a neural network really help?

!13

Is there really no simple procedure for
fitting a neural network that works well for
tabular and/or high-dimensional data?

Today’s talk
1. Review of neural networks

2. Neural networks with variable selection

3. Neural networks with variable and architecture
selection

!14

Predicting � given � when:

• The number of variables � is large compared to the number of
observations � (high-dimensional)

• The conditional relationship is unknown and we’d like to place minimal
assumptions on its structure (nonparametric)

• Our prior knowledge tells us that only a subset of variables are
important (sparsity)

Y X
p

n

Nonparametric learning in high dimensions

Genes

Patients X

0
1
0
1
1
0
1
0

1
1

Y

!15

• Ordinary least squares is likely to overfit in high-
dimensional settings.

• Sparsity-inducing penalties like the lasso and the group
lasso are commonly used in such settings to regularize
the model:

Recall: sparse linear models

min
θ

1
n

n

∑
i=1

(yi − θ⊤xi)2 + λ∥θ∥1
Lasso

(Tibshirani 1996)

min
θ

1
n

n

∑
i=1

(yi − θ⊤xi)2 + λ1∥θ∥1 + λ2

m

∑
j=1

∥θ(j)∥2 Sparse Group Lasso
(Simon 2013)

!16

• Relaxing the assumption of linearity, we
can also fit additive models of the form:

�

• To reduce overfitting, we can fit sparse
additive models (SpAM) by penalizing
the L2 norm of the univariate functions
(Ravikumar 2009)

f(x) =
p

∑
j=1

fj(xj)

Recall: sparse additive models

min
fj:j=1,..,p

1
n

n

∑
i=1

(yi − f(xi))2 + λ
p

∑
j=1

fj
2

f1(x1)

f2(x2)

f3(x3)

!17

• We can take a similar approach for neural networks.

• Example 1: If � , then the neural network

will not depend on � .

W(1)
1,1 = W(1)

1,2 = W(1)
1,3 = 0

x1

Sparsity + Neural networks?

x1

x2

x3

x4

W(1)
1,1

W(1)
1,2

W(1)
1,3

!18

• We can take a similar approach for neural networks.

• Example 2: If � , then only one of the hidden

nodes will depend on � .

W(1)
1,1 = W(1)

1,2 = 0
x1

Sparsity + Neural networks?

x1

x2

x3

x4

W(1)
1,1

W(1)
1,2

W(1)
1,3

!19

Sparse-Input Neural Networks (SPINN)

x1

x2

x3

x4

Encourages sparsity of edge weights in the first layer

Encourages
weight matrices
of later layers
to be small

Jean Feng and Noah Simon. “Sparse-Input Neural Networks
for High-Dimensional Nonparametric Regression.” ICML
2017 Workshop on Principled Approaches to Deep Learning.
http://arxiv.org/abs/1711.07592.

• We can use a sparse group lasso penalty to train a neural
network that depends on a small number of variables:

�min
W,b

1
n

n

∑
i=1

(yi − fW,b(xi))2 + λ1∥W(1)∥1 + λ2

p

∑
j=1

∥W(1)
j,⋅ ∥2 + λ3

L

∑
l=2

∥W(l)∥2
2

Encourages removal of all
edges connected to the

same input variable

!20

• We minimize the penalized empirical loss via
generalized gradient descent:

At each iteration, we:

1. Take a gradient step with respect to the smooth
terms (empirical risk + ridge penalty)

2. Shrink and threshold the parameters in the sparse
group lasso

• To test different values of the penalty parameter, you can
consider warm-starts to accelerate training.

• Recent works have explored analogs of the Lasso
paths for neural networks (Lemhadri 2021).

Training sparse-input neural networks

New step

!21

Simulation study

!22

Simulation study

Models Weights

!23

Application: Predicting riboflavin
production from gene expression data

!24

• We can use the lasso and the group lasso to train neural
networks that depend on a small number of variables.

• SPINN performs well in high-dimensional settings and
significantly better than ridge-penalized NNs.

• However, the performance of SPINN depends on
performing architecture search, which is computationally
expensive.

Summary

!25

Today’s talk
1. Review of neural networks

2. Neural networks with variable selection

3. Neural networks with variable and architecture
selection

!26

We have shifted the burden of variable selection to the
“inner” optimization procedure, but the problem of
architecture selection remains…

“Outer” optimization procedure:

Hyperparameter optimization

“Inner” optimization procedure:

Neural network training

Hyperparameters to tune:

• Which variables to include

• Number of layers

• Number of hidden nodes in each layer

• Penalty parameters

• …

Penalization performs:

• Variable selection

x

x

x
x

x

x
x

min
W,b

1
n

n

∑
i=1

(yi − fW,b(xi))2 +
3

∑
j=1

λjPj(W)

!27

Two!

Can we also shift the burden of architecture search?

!28

“Outer” optimization procedure:

Hyperparameter optimization

“Inner” optimization procedure:

Neural network pruning + training

Hyperparameters to tune:

• Which variables to include

• Number of layers

• Number of hidden nodes in each layer

• Penalty parameters

• …

Penalization performs:

• Variable selection

• Architecture selection

min
θ

1
n

n

∑
i=1

(yi − fθ(xi))2 + λ1P1(θ) + λ2P2(θ)

Sparse-Input hiERarchical networks (SIER-net)

!29

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1

β

{αl}L−1
l=1

Skip-connections

Input filter layer

Jean Feng and Noah Simon. “Ensembled Sparse-Input
Hierarchical Networks for High-Dimensional Datasets.”
Under review. http://arxiv.org/abs/2005.04834.

!30

where � are the values of the
additional hidden nodes at layer �

ξl
l

ξ1 ξ2 ξ3

ξ4

{αl}L−1
l=1

Skip-connections

fβ,W,α(x) = ψ
L−1

∑
l=1

|αl |

∑L
l′�=1 |αl′�|

ξl

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1

!31

ξ2

ξ4

X
X
X
X
X
X
X
X
X
X

X

ξ1 ξ3

X
X

“Hierarchical”

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1

!32

β

Input filter layer

z1,j = βjxj
for �j = 1,...,p

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1

!33

β

Input filter layer

z1,j = βjxj
for �j = 1,...,d

X
X
X

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1

!34

Input sparsity

Network
compactness

Linear model where all coefficients are nonzero

Sparse linear model

5-layer sparse-input
neural network

3-layer sparse-input
neural network

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1

• Establishing variable selection guarantees is generally a difficult
endeavor that requires strong assumptions, even for linear
models.

• Variable selection for neural networks is even harder because the
objective is non-convex with respect to the model parameters.

• Under certain conditions, the total weight assigned to
irrelevant input variables by SPINN with a single hidden layer
scales at a rate of � (Feng and Simon 2017).

• Rather than focusing on variable selection, can we say
something about variable screening under less stringent
conditions?

O(log p)

Variable selection

!35

s*

• For true model � , suppose � is its true support, e.g.
� .

• Let � be the estimated support by SIER-net.

f* s*
E[Y |X = x] = f*(x1, . . . , x|s*|)

̂s

Can SIER-net be used for support screening?

!36

False negatives
= !s*∖ ̂s

What is ! ?Pr (|s*∖ ̂s | ≥ m)
X
X
X

Predictive value of the true support

!37

True support ! explains 95% of the variance.s* = {X2, X3, X4}

Candidate support ! can explain 92% of the variance.{X1, X2}

Support screening
performance:

�qm = Pr (|s*∖ ̂s | ≥ m)

Predictive value of
variables inside � relative

to variables outside:
�

s*

γ(m)

Predictive value of
variables inside � relative

to variables outside:
�

s*

γ(m)

• Upper bound: For sparse-input
hierarchical networks, � is
small if � is at least
� .

• Lower bound: Any estimation
procedure requires at least
� for � to be small.

qm
n

n ≳ 1/γ2(m)

n ≳ 1/γ(2m) qm

Support screening: Results

!38

Support screening
performance:

�qm = Pr (|s*∖ ̂s | ≥ m)

➡Sparse-input hierarchical
networks can perform support
screening effectively if the
covariates are independent.

➡However, accurate support
screening is unrealistic if the
covariates are highly
correlated. Ensembling!

• Ensembling tends to improve performance for high-variance, low-
bias methods, e.g. decision trees and neural networks
(Lakshminarayanan 2017).

• Ensembling can be viewed as an approximation of Bayesian model
averaging (BMA) (Wilson 2020, Pearce 2020).

Recall the power of ensembling…

!39

!40

Ensemble by Averaging Sparse-Input
hiERarchical networks (EASIER-net)

β

α1

α2

α3

β

α1

α2

α3

β

α1

α2

α3

β

α1

α2

α3

β

α1

α2

α3

SIER-net EASIER-net

• By viewing ensembling as an approximation of Bayesian model averaging,
ensembling SIER-net gives us two major benefits with respect to variable
selection:

• The ensemble quantifies the uncertainty of the true support: the probability
that a member in EASIER-net selects support 𝑠 ̃is approximately equal to the
posterior probability that the true support is 𝑠 ̃

• Ensembling induces a “grouping effect,” where strongly correlated variables
are selected at similar rates.

Simulation study: Variable screening

!41

• We study the performance of SIER-net and EASIER-net on 46 gene
expression datasets from the Curated Microarray Database
(CuMiDa)

• Number of categories: two to seven

• Number of measured genes: ten to fifty thousand

• Number of observations: ten to three hundred

• Initialize SIER-net and EASIER-net with five hidden layers and 100
hidden nodes per layer

Application: Gene expression data analysis

!42

Application: Gene expression data analysis

!43

• How deep were the
neural networks?

• How many variables
were selected?

Application: Gene expression data analysis

!44

• Neural network can be useful for tabular, high-
dimensional datasets… But to make them worth the
computation time, you’ll need some extra tricks!

• EASIER-nets rely on two carefully-designed lasso
penalties.

• The ensembling step in EASIER-net helps quantify the
uncertainty of the variable selection procedure.

Conclusion

!45

• Jean Feng and Noah Simon. “Ensembled Sparse-Input Hierarchical
Networks for High-Dimensional Datasets.” Under review. http://
arxiv.org/abs/2005.04834.

• Python code: https://github.com/jjfeng/easier_net

• R package: https://github.com/jjfeng/easier_net_R

• Jean Feng and Noah Simon. “Sparse-Input Neural Networks for High-
Dimensional Nonparametric Regression.” ICML 2017 Workshop on
Principled Approaches to Deep Learning. http://arxiv.org/abs/
1711.07592.

References

!46

• Joint with work Noah Simon

• ASA SLDS and Jaime Speiser

Thank you!

!47

