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Today’s talk
1. Review of neural networks 

2. Neural networks with variable selection  

3. Neural networks with variable and architecture 
selection
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Deep learning (DL) is a non-parametric machine learning 
method that builds large computational graphs called neural 
networks to model complex nonlinearities, interactions, and 
hierarchies in the data.


 — A statistical perspective of DL

What is deep learning?

Problem Child

Input Output
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Simple Complex

Olah 2017

• Universal Approximation Theorem: 
We can create a sufficiently large 
neural network to approximate any 
function.


• Memory efficient: Neural networks 
can express complex function using a 
small number of parameters.


• Representational learning: Neural 
networks iteratively apply non-linear 
transformations to create increasingly 
abstract representations.


• Highly modular: It is easy to add 
nodes, layers, modules!

Strengths of deep learning
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Neural networks

Linear model Nonlinear model with 
complex interactions

• Neural networks span a wide range of models:
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Linear regression as a neural network

x1

x2

x3

x4

w1

w2

w3
w4 fW,b(x) = Wx + b

“Weights” “Bias”
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Logistic regression as a neural network

x1

x2

x3

x4

w1

w2

w3
w4 fW,b(x) = σ(Wx + b)

σ(z) =
exp(z)

1 + exp(z)

Sigmoid function

“Activation function”
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A linear neural network

z1 = W(1)x + b(1)

fW,b(x) = W(2)z1 + b(2)

Hidden layerInput Output
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A dense neural network

z1 = σ1(W(1)x + b(1))

fW,b(x) = σ2(W(2)z1 + b(2))

Nonlinear activation function

Hidden layerInput Output
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Deep neural networks
Width

Depth
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Full procedure for training a neural network
“Inner” optimization procedure:


Neural network training

min
W,b

1
n

n

∑
i=1

(yi − fW,b(xi))2 + λ∥W∥2

Minimize objective function, e.g.

“Outer” optimization procedure:

Hyperparameter optimization

Hyperparameters to tune:

• Number of layers

• Number of hidden nodes per layer

• Which variables to include

• Penalty parameters

• …

Hyperparameter 1

Hyperparameter 2

Hyper-
parameter 

3

!11



• Grid search


• Random search


• Gradient-free optimization


• Gradient-based optimization

Hyperparameter 
optimization

All of these methods are computationally expensive. 

Is the added computation time worth it, relative to the 
performance gain?
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• Neural networks don’t often 
outperform other off-the-shelf ML 
methods on tabular datasets.


• Neural networks often overfit on 
high-dimensional datasets.

Will a neural network really help?
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Is there really no simple procedure for 
fitting a neural network that works well for 
tabular and/or high-dimensional data?



Today’s talk
1. Review of neural networks 

2. Neural networks with variable selection  

3. Neural networks with variable and architecture 
selection
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Predicting �  given �  when:


• The number of variables �  is large compared to the number of 
observations �  (high-dimensional)


• The conditional relationship is unknown and we’d like to place minimal 
assumptions on its structure (nonparametric)


• Our prior knowledge tells us that only a subset of variables are 
important (sparsity)

Y X
p

n

Nonparametric learning in high dimensions

Genes

Patients X

0
1
0
1
1
0
1
0

1
1

Y
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• Ordinary least squares is likely to overfit in high-
dimensional settings.


• Sparsity-inducing penalties like the lasso and the group 
lasso are commonly used in such settings to regularize 
the model:

Recall: sparse linear models

min
θ

1
n

n

∑
i=1

(yi − θ⊤xi)2 + λ∥θ∥1
Lasso 

(Tibshirani 1996)

min
θ

1
n

n

∑
i=1

(yi − θ⊤xi)2 + λ1∥θ∥1 + λ2

m

∑
j=1

∥θ( j)∥2 Sparse Group Lasso 
(Simon 2013)
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• Relaxing the assumption of linearity, we 
can also fit additive models of the form:


� 


• To reduce overfitting, we can fit sparse 
additive models (SpAM) by penalizing 
the L2 norm of the univariate functions 
(Ravikumar 2009)

f(x) =
p

∑
j=1

fj(xj)

Recall: sparse additive models

min
fj:j=1,..,p

1
n

n

∑
i=1

(yi − f(xi))2 + λ
p

∑
j=1

fj
2

f1(x1)

f2(x2)

f3(x3)
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• We can take a similar approach for neural networks.


• Example 1: If � , then the neural network 

will not depend on � .

W(1)
1,1 = W(1)

1,2 = W(1)
1,3 = 0

x1

Sparsity + Neural networks?

x1

x2

x3

x4

W(1)
1,1

W(1)
1,2

W(1)
1,3
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• We can take a similar approach for neural networks.


• Example 2: If � , then only one of the hidden 

nodes will depend on � .

W(1)
1,1 = W(1)

1,2 = 0
x1

Sparsity + Neural networks?

x1

x2

x3

x4

W(1)
1,1

W(1)
1,2

W(1)
1,3
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Sparse-Input Neural Networks (SPINN)

x1

x2

x3

x4

Encourages sparsity of edge weights in the first layer

Encourages 
weight matrices 
of later layers 
to be small

Jean Feng and Noah Simon. “Sparse-Input Neural Networks 
for High-Dimensional Nonparametric Regression.” ICML 
2017 Workshop on Principled Approaches to Deep Learning. 
http://arxiv.org/abs/1711.07592.

• We can use a sparse group lasso penalty to train a neural 
network that depends on a small number of variables:


�min
W,b

1
n

n

∑
i=1

(yi − fW,b(xi))2 + λ1∥W(1)∥1 + λ2

p

∑
j=1

∥W(1)
j,⋅ ∥2 + λ3

L

∑
l=2

∥W(l)∥2
2

Encourages removal of all 
edges connected to the 

same input variable
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• We minimize the penalized empirical loss via 
generalized gradient descent:


At each iteration, we:


1. Take a gradient step with respect to the smooth 
terms (empirical risk + ridge penalty)


2. Shrink and threshold the parameters in the sparse 
group lasso


• To test different values of the penalty parameter, you can 
consider warm-starts to accelerate training.


• Recent works have explored analogs of the Lasso 
paths for neural networks (Lemhadri 2021).

Training sparse-input neural networks

New step
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Simulation study
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Simulation study

Models Weights
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Application: Predicting riboflavin 
production from gene expression data
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• We can use the lasso and the group lasso to train neural 
networks that depend on a small number of variables.


• SPINN performs well in high-dimensional settings and 
significantly better than ridge-penalized NNs.


• However, the performance of SPINN depends on 
performing architecture search, which is computationally 
expensive.

Summary
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2. Neural networks with variable selection  
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We have shifted the burden of variable selection to the 
“inner” optimization procedure, but the problem of 
architecture selection remains…

“Outer” optimization procedure:

Hyperparameter optimization

“Inner” optimization procedure:

Neural network training

Hyperparameters to tune:

• Which variables to include

• Number of layers

• Number of hidden nodes in each layer

• Penalty parameters

• …

Penalization performs:

• Variable selection


x

x

x
x

x

x
x

min
W,b

1
n

n

∑
i=1

(yi − fW,b(xi))2 +
3

∑
j=1

λjPj(W )
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Two!

Can we also shift the burden of architecture search?
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“Outer” optimization procedure:

Hyperparameter optimization

“Inner” optimization procedure:

Neural network pruning + training

Hyperparameters to tune:

• Which variables to include

• Number of layers

• Number of hidden nodes in each layer

• Penalty parameters

• …

Penalization performs:

• Variable selection

• Architecture selection

min
θ

1
n

n

∑
i=1

(yi − fθ(xi))2 + λ1P1(θ) + λ2P2(θ)



Sparse-Input hiERarchical networks (SIER-net)
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min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1

β

{αl}L−1
l=1

Skip-connections

Input filter layer

Jean Feng and Noah Simon. “Ensembled Sparse-Input 
Hierarchical Networks for High-Dimensional Datasets.” 
Under review. http://arxiv.org/abs/2005.04834.
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where �  are the values of the 
additional hidden nodes at layer �

ξl
l

ξ1 ξ2 ξ3

ξ4

{αl}L−1
l=1

Skip-connections

fβ,W,α(x) = ψ
L−1

∑
l=1

|αl |

∑L
l′�=1 |αl′�|

ξl

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1
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ξ2

ξ4

X
X
X
X
X
X
X
X
X
X

X

ξ1 ξ3

X
X

“Hierarchical”

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1
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β

Input filter layer

z1,j = βjxj
for �j = 1,...,p

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1
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β

Input filter layer

z1,j = βjxj
for �j = 1,...,d

X
X
X

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1
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Input sparsity

Network 
compactness

Linear model where all coefficients are nonzero

Sparse linear model

5-layer sparse-input 
neural network

3-layer sparse-input 
neural network

min
β,W,α

1
n

n

∑
i=1

(yi − fβ,W,α(xi))
2

+ λ1∥β∥1 + λ2∥W∥1



• Establishing variable selection guarantees is generally a difficult 
endeavor that requires strong assumptions, even for linear 
models.


• Variable selection for neural networks is even harder because the 
objective is non-convex with respect to the model parameters.


• Under certain conditions, the total weight assigned to 
irrelevant input variables by SPINN with a single hidden layer 
scales at a rate of �  (Feng and Simon 2017).


• Rather than focusing on variable selection, can we say 
something about variable screening under less stringent 
conditions?

O( log p)

Variable selection
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s*

• For true model  � , suppose �  is its true support, e.g.
� .


• Let �  be the estimated support by SIER-net.

f* s*
E[Y |X = x] = f*(x1, . . . , x|s*|)

̂s

Can SIER-net be used for support screening?

!36

False negatives 
= !s*∖ ̂s

What is ! ?Pr ( |s*∖ ̂s | ≥ m)
X
X
X



Predictive value of the true support
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True support !  explains 95% of the variance.s* = {X2, X3, X4}

Candidate support !  can explain 92% of the variance.{X1, X2}

Support screening 
performance:


�qm = Pr ( |s*∖ ̂s | ≥ m)

Predictive value of 
variables inside �  relative 

to variables outside: 
�

s*

γ(m)



Predictive value of 
variables inside �  relative 

to variables outside: 
�

s*

γ(m)

• Upper bound: For sparse-input 
hierarchical networks, �  is 
small if �  is at least 
� .


• Lower bound: Any estimation 
procedure requires at least 
�  for �  to be small.

qm
n

n ≳ 1/γ2(m)

n ≳ 1/γ(2m) qm

Support screening: Results
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Support screening 
performance:


�qm = Pr ( |s*∖ ̂s | ≥ m)

➡Sparse-input hierarchical 
networks can perform support 
screening effectively if the 
covariates are independent.


➡However, accurate support 
screening is unrealistic if the 
covariates are highly 
correlated. Ensembling!



• Ensembling tends to improve performance for high-variance, low-
bias methods, e.g. decision trees and neural networks 
(Lakshminarayanan 2017).


• Ensembling can be viewed as an approximation of Bayesian model 
averaging (BMA) (Wilson 2020, Pearce 2020).

Recall the power of ensembling…
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Ensemble by Averaging Sparse-Input 
hiERarchical networks (EASIER-net)

β

α1

α2

α3

β

α1

α2

α3

β

α1

α2

α3

β

α1

α2

α3

β

α1

α2

α3

SIER-net EASIER-net

• By viewing ensembling as an approximation of Bayesian model averaging, 
ensembling SIER-net gives us two major benefits with respect to variable 
selection:


• The ensemble quantifies the uncertainty of the true support: the probability 
that a member in EASIER-net selects support 𝑠 ̃is approximately equal to the 
posterior probability that the true support is 𝑠 ̃


• Ensembling induces a “grouping effect,” where strongly correlated variables 
are selected at similar rates.



Simulation study: Variable screening
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• We study the performance of SIER-net and EASIER-net on 46 gene 
expression datasets from the Curated Microarray Database 
(CuMiDa)


• Number of categories: two to seven


• Number of measured genes: ten to fifty thousand


• Number of observations: ten to three hundred


• Initialize SIER-net and EASIER-net with five hidden layers and 100 
hidden nodes per layer

Application: Gene expression data analysis
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Application: Gene expression data analysis
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• How deep were the 
neural networks?


• How many variables 
were selected?

Application: Gene expression data analysis
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• Neural network can be useful for tabular, high-
dimensional datasets… But to make them worth the 
computation time, you’ll need some extra tricks!


• EASIER-nets rely on two carefully-designed lasso 
penalties.


• The ensembling step in EASIER-net helps quantify the 
uncertainty of the variable selection procedure.

Conclusion
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• Jean Feng and Noah Simon. “Ensembled Sparse-Input Hierarchical 
Networks for High-Dimensional Datasets.” Under review. http://
arxiv.org/abs/2005.04834.

• Python code: https://github.com/jjfeng/easier_net

• R package: https://github.com/jjfeng/easier_net_R


• Jean Feng and Noah Simon. “Sparse-Input Neural Networks for High-
Dimensional Nonparametric Regression.” ICML 2017 Workshop on 
Principled Approaches to Deep Learning. http://arxiv.org/abs/
1711.07592.
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