Opportunities at the intersection of Machine Learning and Epidemiology

Jean Feng University of California, San Francisco

2016 .11.	+	Arterys Cardio DL		software analyzing cardiovascular images from MR
2017 .03.	+	EnsoSleep		diagnosis of sleep disorders
2017.11.	+	Arterys Oncology DL		medical diagnostic application
2018 .01.	+	ldx		detection of diabetic retinopathy
2018.02.	+	ContaCT	\otimes	stroke detection on CT
	+	OsteoDetect	\otimes	X-ray wrist fracture diagnosis
2018.03.	+	Guardian Connect System	0	predicting blood glucose changes
2018.05.	+	EchoMD (AEF Software)		echocardiogram analysis
2018.06.	+	DreaMed		managing Type 1 diabetes.
2018.07.	+	BriefCase		triage and diagnosis of time sensitive patients
	+	ProFound™ Al Software V2.1		breast density via mammogprahy
2018.08.	+	Arterys MICA		liver and lung cancer diagnosis on CT and MRI
2018.09.	+	SubtlePET		radiology image processing software
	+	AI-ECG Platform		ECG analysis support
2018.10.	+	Accipiolx		acute intracranial hemorrhage triage algorithm
	+	icobrain		MRI brain interpretation
2018.11.	+	FerriSmart Analysis System		measure liver iron concentration
2019 .03.	+	cmTriage		mammogram workflow
2019.04.	+	Deep Learning Image Reconstruction		CT image reconstruction
2019.05.	+	HealthPNX		chest X-Ray assessment pneumothorax
2019.06.	+	Advanced Intelligent Clear-IQ Engine		noise reduction algorithm
2019.07.	+	SubtleMR		radiology image processing software
	+	Al-Rad Companion (Pulmonary)		CT image reconstruction - pulmonary
2019.08.	+	Critical Care Suite		chest X-Ray assessment pneumothorax
2019.09.	+	Al-Rad Companion (Cardiovascular)		CT image reconstruction - cardiovascular
2019.11.	+	EchoGo Core		quantification and reporting of results of cardiovascular
2019.12.	+	TransparaTM		mammogram workflow
2020.01.	+	QuantX	\otimes	radiological software for lesions suspicious for cancer
	+	Eko Analysis Software		cardiac Monitor

Benjamens 2020

ARTICLE OPEN

Check for updates

ARTICLE OPEN

Machine learning-based prediction of COVID-19 diagnosis based on symptoms

Yazeed Zoabi 1° , Shira Deri-Rozov¹ and Noam Shomron 1°

Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19

Sonu Subudhi ^[6], Ashish Verma ^{[62,10}, Ankit B. Patel ^{[62,10}, C. Corey Hardin³, Melin J. Khandekar ^{[64}, Hang Lee⁵, Dustin McEvoy ^{[66}, Triantafyllos Stylianopoulos⁷, Lance L. Munn ^{[68}, Sayon Dutta ^[69,9] and Rakesh K. Jain ^[68]

Fig. 1 Schematic diagram representing the process of machine learning model development. a Flow diagram depicting steps in obtaining the training and temporal validation datasets (with patient numbers in each step). b The process of patient selection, dataset balancing, hyperparameter tuning, cross-validation and temporal validation are shown.

COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images

Linda Wang^{1,2,3}, Zhong Qiu Lin^{1,2,3} & Alexander Wong^{1,2,3}

Architecture	Normal	Non-COVID19	COVID-19	
Positive predictive value (%)				
VGG-19	83.1	75.0	98.4	
ResNet-50	88.2	86.8	98.8	
COVID-Net	90.5	91.3	98.9	

Gradient boosted trees

Neural network

ML for Epidemiology: Interpretable ML

Epidemiology for ML: Surveillance of ML

Interpretable ML

Table 1. Variables Used to Train Machine Learning Algorithms

Admissions During Radiation and Chemoradiation: An Internally Validated Pretreatment Machine Learning Algorithm

> Julian C. Hong Donna Niedzwiecki Manisha Palta Jessica D. Tenenbaum

Variable	No. of Levels or Variables
Demographic	
Sex (male, female)	2
Race	12
Age at start of treatment	Continuous
Ethnic group	8
Marital status	7
Religion	46
Zip code	1,248
Disease and treatment	
Primary treatment diagnosis (by subchapter/by three-digit ICD code with metastatic sites based on full ICD code)	59/172
Planned RT dose (Gy)	Continuous
Planned No. of RT fractions	Continuous
RT techniques used (2D or 3D conformal RT, intensity-modulated RT or volumetric modulated arc therapy, stereotactic radiosurgery/stereotactic body RT, total skin irradiation)	5
Any concurrent antineoplastic drugs (first 2 weeks of radiation)	Indicator
Concurrent antineoplastic drugs by MeSHPA class/RxNorm agent	51/86
Any recent antineoplastic drugs (6 months before radiation)	Indicator
Recent antineoplastic drugs by MeSHPA class/RxNorm agent	58/109
Treating radiation oncologist	26
Recent encounters before treatment in EHR	
Time since most recent admission and emergency visit before start of radiation	Continuous
No. of admissions in the month and year before start of radiation	Continuous
No. of days admitted in the year before start of radiation	Continuous
No. of emergency visits in the month and year before start of radiation	Continuous
Started RT as inpatient	Indicator
Medical history known at start of radiation	
All prior diagnosis and problem list ICD history (by ICD subchapter)	269
All prior CPT history	9,236
All prior level-3 Agency for Healthcare Research and Quality category history	323
Medications before and at start of therapy	
All recent medications (6 months before radiation; MeSHPA class)	298
All active medications at start of radiation (MeSHPA class)	295
Social history	
Reported tobacco use	5
Reported alcohol use	3
Reported illicit drug use	3
Reported sexually active	4
Recent laboratory values	
Presence of any abnormally flagged laboratory studies in the 4 weeks before start of radiation	737
Recent vital signs in the year before start of treatment	
Weight loss from maximum weight	Continuous
Presence of hypertension (SBP \geq 130 mm Hg, DBP \geq 80 mm Hg)	Indicator
Presence of hypotension (SBP < 90 mm Hg, DBP < 60 mm Hg)	Indicator

(Continued on following page)

Linardatos 2021

Variable importance (VI)

Statistics/Epidemiology

1950s: R² and ANOVA for parametric models

2010s: Nonparametric population-level R² and variable importance **Machine learning**

-2000s: Model-specific VI

— 2017: Shapley Model-specific VI

What is the "right" Variable Importance measure?

Statistics/Epidemiology

Population-level VI is a property of $\mathbb{E}[Y|X = x] = \mu(x)$

- The population-level VI is an estimand and must be estimated its value, i.e. using ML.
 Moreover, we should quantify the uncertainty of our estimates using confidence intervals.
- Population-level VI is model-agnostic, so its estimates using different ML algorithms should be similar.
- Although the true Shapley population-level VI is computationally intractable, we can efficiently calculate estimates for Shapley population-level VI.

Machine learning

Model-specific VI is a property of $\hat{f}(x)$

- Model-specific VI does not need to be estimated because we have access to the entire model.
- Model-specific VI measures vary across different models.
- In general, calculating the Shapley model-specific VI is computationally infeasible. Instead, one may rely on approximations.

Shapley Population-level VI measures (SPVIM)

Q: How important is variable X_j at explaining the variability of the outcome *Y* in the population?

$$\underline{\text{Estimand:}} \quad \psi_j = \sum_{s \in \{1, \dots, p\} \setminus \{j\}} \frac{1}{p} \binom{p-1}{|s|}^{-1} \underbrace{\left\{ \mathbb{E} \left[(Y - \mu_s(X))^2 \right] - \mathbb{E} \left[(Y - \mu_{s \cup \{j\}}(X))^2 \right] \right\}}_{\text{Solution}}$$

Change in mean squared error when information on X_i is available

Estimation procedure: For randomly sampled subsets *s*, use ML to estimate μ_s . Employ sample-splitting to estimate the population-level VI and prevent over-fitting.

Williamson and Feng 2020

From model-specific VI to population-level VI

ML for Epidemiology: Interpretable ML

Epidemiology for ML: Surveillance of ML

Calibration drift in regression and machine learning models for acute kidney injury

Sharon E Davis,¹ Thomas A Lasko,¹ Guanhua Chen,² Edward D Siew,^{3,4} Michael E Matheny^{1,2,3,5}

Years from end of development period to end of validation period

Using explainable machine learning to characterise data drift and detect emergent health risks for emergency department admissions during COVID-19

Christopher Duckworth^{1⊠}, Francis P. Chmiel¹, Dan K. Burns¹, Zlatko D. Zlatev¹, Neil M. White¹, Thomas W. V. Daniels^{2,3}, Michael Kiuber⁴ & Michael J. Boniface¹

Tools for monitoring machine learning models

Method(s)	What the method(s) detect and assumptions	Example uses
CUSUM, EWMA	Detects a shift in the mean of a single variable, given shift size. Assumes the pre-shift mean and variance are known. Extensions can monitor changes in the variance.	Monitoring changes in individual input variables
		 Monitoring changes in real-valued performance metrics (e.g. monitoring the prediction error)
MCUSUM, MEWMA, Hotelling's T ²	Monitor changes in the relationship between multiple variables	 Monitoring changes in the relationship between input variables
Generalized likelihood ratio test (GLRT), Online change point detection	Detects if a change occurred in a data distribution and when. Can be applied if characteristics of the pre- and/ or post-shift distributions are unknown. GLRT methods typically make parametric assumptions. Parametric and nonparametric variants exist for online change point detection methods.	 Detecting distributional shifts for individual or multiple input variables
		 Detecting shifts in the conditional distribution of outcome Y given input variables
		 Determining whether parametric model recalibration/ revision is needed
Generalized fluctuation monitoring	Monitor changes to the residuals or gradient	 Detect when the average gradient of the training loss for a differentiable ML algorithm (e.g. neural network) differs from zero

Feng et al 2022

The problem of Confounding Medical Interventions (and why causality matters)

- 1. Alert! Patient is at high risk of developing an adverse event
- 2. Administer prophylactic treatment
- 3. Patient doesn't develop the adverse event

Was the model wrong or did the treatment make a difference?

The problem of Confounding Medical Interventions (and why causality matters)

 Moreover, we need to think about if/how treatment propensities vary over time as clinicians interact with the ML-based clinical decision support system.

Bringing in ideas from causal inference

- Key questions to answer:
 - What is the target of inference?
 - What types of bias arise in this situation?
 - What are the confounders in this problem? What is the adjustment set?
- For instance, we may assume conditional exchangeability, i.e. no unmeasured confounding:

A clinician's propensity to treat patient X_t only depends on their prediction $f(X_t)$ and the clinician's past experiences interacting with the ML algorithm.

Case study: Post-operative Nausea and Vomiting (PONV)

- <u>Data</u>: UCSF Multicenter Perioperative Outcomes Group (MPOG)
- <u>ML algorithm</u>: Random Forest using sex, smoking status, American Society of Anesthesiologists (ASA) classification, ...

Other opportunities at the intersection

ML for Epidemiology:

Interpretable ML

Using ML to unlock new data modalities, e.g. images, videos, audio, free text

Nonparametric treatment effect estimation

Heterogeneous treatment effects

Epidemiology for ML:

Surveillance of ML

Embedding causal reasoning into ML algorithms

Transportable ML algorithms

Thanks!

Noah Simon

Rachael Phillips

Brian Williamson

Ivana Malenica

Alexej Gossmann

Berkman Sahiner

Romain Pirracchio

Andrew Bishara

Nicholas Petrick

Leo Celi

Alan Hubbard

Gene Pennello

Support from the UCSF-Stanford CERSI program

(Disclaimer: The contents are those of the author(s) and do not necessarily represent the official views of, nor an endorsement, by FDA/HHS, or the U.S. Government.)