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ML for Epidemiology: Interpretable ML

Epidemiology for ML: Surveillance of M




Interpretable ML

x— Bl —v

Predicting Emergency Visits and Hospital
Admissions During Radiation and
Chemoradiation: An Internally Validated
Pretreatment Machine Learning Algorithm

Julian C. Hong
Donna Niedzwiecki
Manisha Palta

Jessica D. Tenenbaum

Table 1. Variables Used to Train Machine Learning Algorithms

No. of Levels
Variable or Variables

Demographic

Sex (male, female) 2

Race 12

Age at start of treatment Continuous

Ethnic group 8

Marital status 7

Religion 46

Zip code 1,248
Disease and treatment

Primary treatment diagnosis (by subchapter/by three-digit ICD code with metastatic sites based 59/172

on full ICD code)

Planned RT dose (Gy) Continuous

Planned No. of RT fractions Continuous

RT techniques used (2D or 3D conformal RT, intensity-modulated RT or volumetric modulated 5

arc therapy, stereotactic radiosurgery/stereotactic body RT, total skin irradiation)

Any concurrent antineoplastic drugs (first 2 weeks of radiation) Indicator

Concurrent antineoplastic drugs by MeSHPA class/RxNorm agent 51/86

Any recent antineoplastic drugs (6 months before radiation) Indicator

Recent antineoplastic drugs by MeSHPA class/RxNorm agent 58/109

Treating radiation oncologist 26
Recent encounters before treatment in EHR

Time since most recent admission and emergency visit before start of radiation Continuous

No. of admissions in the month and year before start of radiation Continuous

No. of days admitted in the year before start of radiation Continuous

No. of emergency visits in the month and year before start of radiation Continuous

Started RT as inpatient Indicator
Medical history known at start of radiation

All prior diagnosis and problem list ICD history (by ICD subchapter) 269

All prior CPT history 9,236

All prior level-3 Agency for Healthcare Research and Quality category history 323
Medications before and at start of therapy

All recent medications (6 months before radiation; MeSHPA class) 298

All active medications at start of radiation (MeSHPA class) 295
Social history

Reported tobacco use 5

Reported alcohol use 3

Reported illicit drug use 3

Reported sexually active 4
Recent laboratory values

Presence of any abnormally flagged laboratory studies in the 4 weeks before start of radiation 737
Recent vital signs in the year before start of treatment

Weight loss from maximum weight Continuous

Presence of hypertension (SBP = 130 mm Hg, DBP = 80 mm Hg) Indicator

Presence of hypotension (SBP < 90 mm Hg, DBP < 60 mm Hg) Indicator

(Continued on following page)
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Variable importance (VI)

Statistics/Epidemiology Machine learning
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What is the “right” Variable Importance measure?

Statistics/Epidemiology

Population-level VIl is a property of
[ Y] X = x] = p(x)

* The population-level VI is an estimand and
must be estimated its value, i.e. using ML.
Moreover, we should quantify the uncertainty
of our estimates using confidence intervals.

* Population-level VI is model-agnostic, so its
estimates using different ML algorithms
should be similar.

* Although the true Shapley population-level VI
IS computationally intractable, we can
efficiently calculate estimates for Shapley
population-level VI.

Machine learning

Model-specific VIl is a property of

J(x)

* Model-specific VI does not need to
be estimated because we have
access to the entire model.

* Model-specific VI measures vary
across different models.

* |n general, calculating the Shapley
model-specific VI is computationally
Infeasible. Instead, one may rely on
approximations.



Shapley Population-level VI measures (SPVIM)

Q: How important is variable X] at explaining the variability of the outcome

Y in the population?

1 (p—1\""
Estimand: ;= Z — (p > {[E (Y — u(X))*| - E [(Y—Msu{j}(X))2] }

Change in mean squared error when
information on X Is available

IV W OO0

H123

Estimation procedure: For randomly sampled subsets s, use ML to estimate y..
Employ sample-splitting to estimate the population-level VI and prevent over-fitting.

Williamson and Feng 2020
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Feature

From model-specific VI to population-level VI

Shapley Model-specific VI

BUN: min-
GCS: mean+
Glucose: max 1
Urine: max
Urine: mean
HR: max
Age
Weight
GCS: max
GCS: min-
Glucose: mean
HCT: max
Glucose: min-
Urine: min+
BUN: mean
HCT: min-
BUN: max 1
Na: min
WBC: min+
ICU Type-
HR: min-

HR: meanH
WBC: max 1
Na: max 1

Na: mean-
HCO03: mean+
HCT: mean-
Temp: mean
K: max
HCO03: max 1
WBC: mean
K: min-
HCO03: min-
K: mean-
Temp: max
Temp: min+
GenderH
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Mean absolute SHAP values

Shapley population-level VI

GCS: max
BUN: mean-
GCS: mean+

BUN: min-

BUN: max 1

Urine: min
Urine: mean 1

ICU Type-
Glucose: max 1
Urine: max 1
HCO03: mean 1
Na: max 1
Age -

GCS: min-
HCO03: max 1
Temp: mean-
WBC: mean 1
Na: meanH
HCO0S: min
Na: min
Weight 1
WBC: min
WBC: max 1
Temp: min-
Temp: max
K: min-

K: mean-

K: max

HR: min

HR: meanH
HR: max 1
HCT: min-
HCT: mean-
HCT: max 1
Glucose: min+
Glucose: meanH
Gender 1

Feature

11

Estimator type

‘ » Boosted trees
I 4 Neural networks

0.06 0.09

SPVIM estimates: AUC

0.03




ML for Epidemiology: Interpretable ML

Epidemiology for ML: Surveillance of M
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Tools for monitoring machine learning models

Table 1. Methods from statistical process control (SPC) and their application to monitoring ML algorithms.

Method(s)

What the method(s) detect and assumptions

Example uses

CUSUM, EWMA

MCUSUM, MEWMA,
Hotelling's T2
Generalized likelihood
ratio test (GLRT), Online
change point detection

Generalized fluctuation
monitoring

Detects a shift in the mean of a single variable, given
shift size. Assumes the pre-shift mean and variance are
known. Extensions can monitor changes in the variance.

Monitor changes in the relationship between multiple
variables

Detects if a change occurred in a data distribution and
when. Can be applied if characteristics of the pre- and/
or post-shift distributions are unknown. GLRT methods
typically make parametric assumptions. Parametric and
nonparametric variants exist for online change point
detection methods.

Monitor changes to the residuals or gradient

* Monitoring changes in individual input variables

* Monitoring changes in real-valued performance
metrics (e.g. monitoring the prediction error)

* Monitoring changes in the relationship between input
variables

« Detecting distributional shifts for individual or multiple
input variables

* Detecting shifts in the conditional distribution of
outcome Y given input variables

+ Determining whether parametric model recalibration/
revision is needed

« Detect when the average gradient of the training loss
for a differentiable ML algorithm (e.g. neural network)
differs from zero

Feng et al 2022
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The problem of Confounding Medical Interventions
(and why causality matters)

Variables Outcome
1. Alert! Patient is at high risk of
X, > Y developing an adverse event
\ / 2. Administer prophylactic treatment
f(X)|— A, 3. Patient doesn’t develop the adverse
— event
Prediction Treatment

Was the model wrong or did the
treatment make a difference?

Dyagilev and Saria 2016

15



The problem of Confounding Medical Interventions
(and why causality matters)

e Moreover, we need to think about if/how treatment
propensities vary over time as clinicians interact with
the ML-based clinical decision support system.

16



Bringing in ideas from causal inference

e Key questions to answer:
e \What is the target of inference?
e \What types of bias arise in this situation?
e \What are the confounders in this problem? What is the adjustment set?

e [or instance, we may assume conditional exchangeabllity, i.e. no
unmeasured confounding:

A clinician’s propensity to treat patient X, only depends on their prediction
f(X,) and the clinician’s past experiences interacting with the ML algorithm.

> Yt—l Xt > Yt

\ / /
e A E e

17



Case study: Post-operative Nausea and Vomiting (PONV)

e Data: UCSF Multicenter Perioperative Outcomes Group (MPOG)

* ML algorithm: Random Forest using sex, smoking status, American
Society of Anesthesiologists (ASA) classification,

Frequentist

Score-based CUSUM

—— Chart statistic

204 —— Control limit
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Bayesian changepoint monitoring
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Other opportunities at the intersection

ML for Epidemiology:

Interpretable ML

Using ML to unlock new data modalities, e.g.
images, videos, audio, free text

Nonparametric treatment effect estimation

Heterogeneous treatment effects

Epidemiology for ML

Surveillance of ML
Embedding causal reasoning into ML algorithms

Transportable ML algorithms
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(Disclaimer: The contents are those of the author(s) and do not necessarily represent the official views of, nor
an endorsement, by FDA/HHS, or the U.S. Government.)
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