I am an Assistant Professor in the Department of Epidemiology and Biostatistics at the University of California, San Francisco and the UCSF-UC Berkeley Joint Program in Computational Precision Health. My research interests include the interpretability and reliability of machine learning methods for healthcare, and am particularly interested in methods for regulating and auditing these models.
I completed my Ph.D. in Biostatistics under Noah Simon and Erick Matsen at the University of Washington. Before that, I studied computer science at Stanford and was a software engineer at Coursera.
Email:
News
- Nov 2023: Our lab has two papers accepted at the Regulatable AI Workshop at NeurIPS! One on a causal monitoring framework for ML-based medical devices (selected for oral) and one on sample size calculations for model fairness audits.
- Sep 2023: Avni Kothari has joined our lab as a data scientist! We’re growing!
- Apr 2023: Harvineet Singh will be joining as a postdoctoral researcher in the lab in July! We’re really excited to have him!
- Nov 2022: Big news! Our grant proposal on developing diagnostic tools for ML algorithms has been funded by PCORI! See the project description here.
- Nov 2022: Thank you to SER digital for the opportunity to discuss the intersection of ML and epidemiology! Slides are here.
- May 2022: Our paper “Clinical Artificial Intelligence Quality Improvement: Towards Continual Monitoring and Updating of AI Algorithms in Healthcare” is published in Nature Digital Medicine! Check it out here.
- Apr 2022: I gave a talk at the Biometrics Journal Club on the statistical considerations when regulating ML-based medical devices that evolve over time. The talk is based on our 2021 Biometrics paper “Approval policies for modifications to machine learning-based software as a medical device: A study of bio-creep”. Slides are here.
- Oct 2021: Romain Pirracchio and I have received a grant to extend our original UCSF-Stanford CERSI proposal “Safe algorithmic change protocols for modifications to AI/ML-based Software as a Medical Device”. This new project will look at the impacts of integrating real-world data. We’re excited to continue working with our CDRH collaborators Berkman Sahiner and Alexej Gossmann!
- Sep 2021: Our work on online recalibration and revision of clinical prediction models was presented at BIOP 2021.
- Aug 2021: I gave a talk as part of the ASA Statistical Learning and Data Science webinar series on deep learning! Check out the slides here.
- Sep 2020: Romain Pirracchio and I have received a grant from the UCSF-Stanford CERSI program for our proposal “Safe algorithmic change protocols for modifications to AI/ML-based Software as a Medical Device”. This grant will be done in close collaboration with Berkman Sahiner and Alexej Gossmann from the US FDA.
Tutorials and Short Courses
- June 2022: I co-taught the Columbia ML bootcamp with Noah Simon and Cody Chiuzan for the third time!
- Aug 2021: I joined forces again with Noah Simon and Cody Chiuzan to teach a short course on machine learning for biomedical and health data.
- Nov 2020: I taught a short course on supervised statistical learning with Ali Shojaie on November 15th at the 6th Seattle Symposium in Biostatistics. (Slides)
- Aug 2020: I taught a short course on machine learning for biomedical and health data with Noah Simon and Cody Chiuzan.